随着人类对微观物理研究的不断深入,对探测技术的分辨率要求亦不断革新,超短脉冲由于其极高的时间分辨率,一直以来都是探测微观物理的重要手段,因此对超短脉冲的时间结构测量显得至关重要。
近二十年来,随着超快光学的不断发展,超短脉冲已经达到了阿秒量级的原子时间尺度,然而由于傅里叶变换的性质,超高时间分辨尺度往往意味着更低的频率分辨率,而原子分子的结构信息往往需在频域中提取,因此,寻求一种同时结合时域和频域分辨率的探测手段显得至关重要。
近日,红宝石国际平台地址超快光学团队以“All-optical attosecond time domain interferometry”为题在《国家科学评论》(National Science Review,NSR)发表研究论文,提出了一种全光阿秒时域干涉方案。我院2017级博士生杨震为论文第一作者,曹伟教授、张庆斌教授和陆培祥教授为共同通讯作者。该方案利用强激光驱动的高次谐波阿秒脉冲序列作为时间干涉狭缝,通过引入弱的微扰场可以精确操控该干涉仪的时域波前,进而影响最终高次谐波频谱分布。单个高次谐波的频率移动直接与微扰场的时域波形及阿秒脉冲的时间间隔相关,可以被用于对相关物理量进行精度测量。该方案克服了单个超短脉冲频域分辨率低的弊端,兼具高的时间分辨本领和能量分辨本领。图1为该干涉仪的原理图。利用该项技术的超高时间分辨率,作者成功实现了任意偏振态光场时域波形的精密测量。
同时,利用该干涉仪特有的能量分辨率,作者也进行了微观粒子结构信息的精密探测。图2显示了两种不同原子(氩和氖)的实验结果。图2中横坐标代表不同阶次高次谐波信号随延迟轴变化的频谱分布,其极小值位置的倒数表征了相邻两个阿秒时间狭缝的间隔。实现发现氖气产生的阿秒时间狭缝间隔为恒定值,而氩气产生的阿秒时间狭缝间隔在50eV左右发生一个微小的跳变,这是由于氩原子具有更多电子壳层,其更复杂的电子态结构导致高次谐波阿秒狭缝可以由两种轨道贡献。不同轨道间的相互干涉使得阿秒狭缝呈现特殊的时域结构,这一异常结构最终能被该干涉仪成功探测。
该方案将基于干涉手段的测量技术推广到了阿秒时间-百毫电子伏时间频率域,在精密测量方面具有广阔的应用前景。
以上工作研究工作得到国家自然科学基金、国家重点研发计划、湖北省对外科技合作等项目的经费支持。
文章信息:https://doi.org/10.1093/nsr/nwaa211